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A stressed thin film on a soft substrate can develop complex wrinkle patterns. The onset of wrinkling and
initial growth is well described by a linear perturbation analysis, and the equilibrium wrinkles can be analyzed
using an energy approach. In between, the wrinkle pattern undergoes a coarsening process with a peculiar
dynamics. By using a proper scaling and two-dimensional numerical simulations, this paper develops a quan-
titative understanding of the wrinkling dynamics from initial growth through coarsening till equilibrium. It is
found that, during the initial growth, a stress-dependent wavelength is selected and the wrinkle amplitude
grows exponentially over time. During coarsening, both the wrinkle wavelength and amplitude increases,
following a power-law scaling under uniaxial compression. More complicated dynamics is predicted under
equibiaxial stresses, which starts with a faster coarsening rate before asymptotically approaching the same
scaling under uniaxial stresses. At equilibrium, a parallel stripe pattern is obtained under uniaxial stresses and
a chaotic labyrinth pattern under equibiaxial stresses. Under stresses of the same magnitude, the two patterns
have the same average wavelength, but different amplitudes. It is noted that the dynamics of wrinkling, while
analogous to other phase ordering phenomena, is distinct and rich under the effects of stress and substrate

elasticity.
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I. INTRODUCTION

Complex wrinkle patterns have been observed in various
thin film systems [1-9], typically with integrated hard and
soft materials for various technological applications as well
as in nature. The underlying mechanism of wrinkling has
been generally understood as a stress-driven instability, con-
ceptually similar to the classical Euler buckling of a com-
pressed column. Much of the existing theoretical work on
wrinkling is based on a linear perturbation analysis [10],
which determines the onset of the mechanical instability.
Some recent studies [11-13] have investigated the nonlinear
aspects due to large deflection, and predicted different
wrinkle patterns based on the principle of energy minimiza-
tion. However, the energy approach cannot address the ques-
tion as to how these patterns emerge and evolve from one
type to another. Recently, a spectrum of evolving wrinkle
patterns has been observed in metal-polymer bilayer [14,15],
exhibiting a peculiar dynamics of evolution process, which
has not been well understood.

In a previous work [16], the kinetics of wrinkle growth in
a stressed elastic film on a viscoelastic substrate was studied
by a linear perturbation analysis, based on which a classifi-
cation of wrinkling behavior was established. Subsequently,
one-dimensional numerical simulations [17] revealed three
stages of wrinkle evolution: initial growth, coarsening, and
equilibration, in qualitative agreement with experimental ob-
servations [14,15]. While the initial growth is well described
by the linear perturbation analysis and the equilibration can
be analyzed using the energy approach, the dynamics of
coarsening has not been quantitatively understood. By using
a proper scaling and two-dimensional numerical simulations,
this paper develops a quantitative understanding of the wrin-
kling dynamics for all three stages. The paper is organized as
follows. Section II briefly outlines the mathematical model
developed in the previous study [17]. In Sec. III, a scaling
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analysis is performed to predict the dynamics at each stage.
Section IV describes a spectral method for two-dimensional
numerical simulations, with the results discussed in Sec. V
for both uniaxially and biaxially stressed films.

II. MODEL DESCRIPTION

A model was developed previously [17] for evolving
wrinkles in a bilayer thin film consisting of an elastic layer
and a viscoelastic layer as sketched in Fig. 1. The deforma-
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FIG. 1. Schematic of an elastic film on a viscoelastic layer sup-

ported by a rigid substrate: (a) the reference state, and (b) a
wrinkled state.
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tion of the elastic film is described by the von Karman plate
theory [18], which gives a nonlinear relationship between the
displacement and the surface traction. For the viscoelastic
layer, a relationship between the surface velocity and the
traction was obtained under the assumption of the Kelvin
model of linear viscoelasticity and a thin-layer approxima-
tion. Coupling of the two layers through the interface leads
to a set of nonlinear evolution equations:
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where w=w(x,,x,,1) is the lateral deflection of the film and
u=u,(x;,x;,1)e,+uy(x;,x,,1)e, is the in-plane displacement.
The components of the in-plane stress o are given by
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where 0'20) is the initial residual stress in the film before

wrinkling, and the in-plane membrane strain components are
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The Greek subscripts, «, B, and v, take on the values of the
in-plane coordinates, 1 and 2, and a repeated subscript im-
plies summation over 1 and 2. In addition to the initial stress,
the physical parameters for the elastic film include 4, for the
thickness, My for the shear modulus, and vy for Poisson’s
ratio. Similarly, for the viscoelastic layer, we have H for the
thickness, 7 for the viscosity, up for the rubbery modulus,
and v for Poisson’s ratio.

While both the lateral deflection and the in-plane dis-
placement are involved during wrinkling, the main character-
istics of the evolution dynamics can be drawn from Eq. (1)
for the lateral deflection. By regrouping the physical param-
eters, Eq. (1) can be rewritten in a mathematically simpler
form
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As will be shown later, the wrinkling process is largely con-
trolled by these three parameters plus the initial film stress.

III. SCALING ANALYSIS

In this section, we derive analytical solutions by a scaling
analysis at the three stages of wrinkle evolution based on the
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FIG. 2. Schematic illustration of the evolution of wrinkle wave-
length and amplitude predicted by the scaling analysis. Stage I:
initial growth, A~N\,,, A~exp(t/47); stage II: coarsening, A\
~ (K1), A~ (K)"™; stage 1II: equilibrium, N\ ~N\,,, A~A,,. The
predicted transition times, #; and 7,, are given by Egs. (20) and (21),
respectively.

model described in Sec. II. The results are summarized in
Fig. 2, which schematically illustrates the three stages pre-
dicted for the evolution of wrinkle wavelength and ampli-
tude.

A. Initial growth

At the early stage of wrinkling, the film stress is hardly
relaxed. Consider an initial stress o, where 0,<<0 for
uniaxial or equibiaxial compression. The first two terms at
the right-hand side of Eq. (5) compete to set a length scale
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and a corresponding time scale
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Neglecting the third term at the right-hand side of Eq. (5)
for the moment, a linear perturbation analysis [17] leads to a
critical wavelength,

)\C = 27TL1 N (9)
and the fastest growing wavelength,
N, =2\27L,, (10)

both proportional to the length scale L;, which in turn is
proportional to the film thickness /. The film is unstable for
wrinkles with wavelengths A >\, and the wrinkle amplitude
grows exponentially with time at the initial stage. The
growth rate, inversely proportional to the time scale 7|, peaks
at the wavelength A=\, for which the wrinkle amplitude is
given by
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t
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Therefore, for the initial growth, the fastest growing mode
dominates, with both the wrinkle wavelength and the growth
rate depending on the film stress dictated by the relevant
length and time scales.

The third term at the right-hand side of Eq. (5) accounts
for the effect of substrate elasticity, which does not change
the fastest growing wrinkle wavelength but reduces the
growth rate. When the compressive film stress is lower than
a critical stress, the substrate elasticity completely suppresses
the wrinkling instability of the film. By setting the growth
rate of the fastest growing wavelength to be zero, one obtains
the critical stress
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Note that Eq. (12) predicts the critical stress under the as-
sumption of thin viscoelastic layer (i.e., H<\,,). The general
solution for an arbitrarily thick viscoelastic layer can be
found elsewhere [16].

B. Coarsening of wrinkles

As the wrinkle amplitude grows to be comparable to the
film thickness, the film stress is significantly relaxed, and the
nonlinear effect of the large deflection must be considered
for the wrinkling process. It was found that, for a uniaxially
compressed elastic film on a viscous substrate (i.e., R=0),
there exists a kinetically constrained wrinkle state for each
unstable wavelength [19]. In the neighborhood of such a
state, the wrinkling process is very slow (i.e., dw/dt=0) due
to the viscous flow, despite the fact that the film remains
energetically unstable. For a particular wavelength (A\>N\,),
setting dw/dt=0 and R=0 in Eq. (5) leads to a spatially
uniform stress in the film

2
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Correspondingly, from Egs. (3) and (4), the wrinkle ampli-

tude is given by
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Therefore, the film stress can be continuously relaxed by
increasing the wrinkle wavelength A\, i.e., coarsening. Mean-
while, the wrinkle amplitude grows.

Assume that the film stays in the neighborhood of the
kinetically constrained states during coarsening, with both
the wrinkle wavelength and the amplitude increasing. At this
stage, the stress in the film is nearly uniform in the spatial
distribution but relaxes over time, which is approximately
given by Eq. (13) as a function of the wrinkle wavelength. In
this case, comparing the first two terms in the right-hand side
of Eq. (5) defines a time scale for coarsening:
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Therefore, the wrinkle wavelength scales with the time as
N ~ (K1), (16)

The corresponding wrinkle amplitude can be obtained from
Eq. (14). For A>\, (long time behavior), the same scaling
law applies for the growth of wrinkle amplitude, i.e., A
~ (K1),

Notably, a molecular dynamics (MD) simulation of buck-
ling molecular chains [20] showed a very similar scaling
with both the wavelength and the amplitude growing as a
power of time, \~¢", w~ B, where both the exponents
nearly equal to 0.26. MD simulations of compressed solid
membrane [21] showed a coarsening dynamics with slightly
larger exponents, n=0.28 and $=0.29. It has been noted that
the nature of such dynamics is analogous to phase ordering
phenomena such as spinodal decomposition [14,20,21].

C. Elastic equilibrium

For a viscoelastic layer with a rubbery limit, the substrate
elasticity eventually stabilizes the wrinkle at an equilibrium
state that minimizes the total strain energy in the film and the
substrate [13,17]. Considering a uniaxially stressed film with
a sinusoidal wrinkle of wavelength N\ and setting dw/dt=0 in
Eq. (5), we obtain that

K(2’7T>2 R<2’7T>_2
o=——|—1| —-=|—| . (17)
N F\ A

Minimization of the stress gives an equilibrium wavelength

1/4 1=2 H 1/4
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(18)

The corresponding equilibrium wrinkle amplitude can be ob-
tained from Eq. (3), namely

2( o
Aug=hy 5(;‘:—1), (19)
where o, is the critical stress given in Eq. (12). The same
results were obtained by an energy minimization approach
[13,17]. Tt is noted that, while the fastest growing wrinkle
wavelength at the early stage depends on the initial stress in
the film, the equilibrium wrinkle wavelength is independent
of the stress. On the other hand, the equilibrium wrinkle
amplitude increases with the magnitude of the stress.

A comparison between the fastest growing wavelength \,,
of the initial growth [Eq. (10)] and the equilibrium wave-
length \,, [Eq. (18)] shows that when |og|>|o.|, Noy>N\,,.
Consequently, the intermediate stage is always coarsening, as
sketched in Fig. 2. The transition points can be determined
approximately using the scaling analysis. First, the coarsen-
ing starts when the initially fastest growing wrinkle (A
=\,,) reaches the kinetically constrained state. From the ex-
ponential growth given in Eq. (11) and the wrinkle amplitude
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given in Eq. (14), we obtain the first transition point

t=4r, ln(—hf—>, (20)

V34,

where A is the initial amplitude at time #=0. Subsequently,
following the power-law scaling in Eq. (16) for the wave-
length coarsening, the second transition point is approxi-
mately given by

Ao\ h
t2=tl(_eq) =_ln<—L) (21)
Mo/ TR O\\34,

Therefore, the first transition time is proportional to the time
scale of initial growth, which inversely scales with the
square of the initial stress in the film, and the second transi-
tion time scales with the relaxation time (1/R) of the vis-
coelastic layer, independent of the stress. Next we turn to
numerical simulations and examine the predictions by the
scaling analysis.

IV. NUMERICAL SIMULATION

Previously a finite difference method was used to simulate
evolution of one-dimensional wrinkles [17]. In this paper, we
adopt a spectral method to simulate wrinkling of two-
dimensional films. For convenience the evolution equations
are normalized by scaling lengths (coordinates and displace-
ments), time, and stress components with hf, 0/ ws, and M
respectively. In addition, we split the linear and nonlinear
terms so that the normalized evolution equations take the
form
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FIG. 3. A random perturbation of the lateral deflection as the
initial condition for numerical simulations. Calculated RMS is
0.0006, and the average wavelength is 19.2.
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where k; and k, are the components of the wave vector in the
reciprocal Fourier space and k= \rk%+k§.

A semi-implicit algorithm is employed to integrate Egs.
(27) and (28). First, the right-hand side of Eq. (27) consists
of a linear part and a nonlinear part, namely

A

%—B‘+¢ (29)
a TP
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2(1—V)hf 6(1—Vf) ,LLf
1-2v H_ .

- i, 31
21—y b, PP (31)

Using a backward finite difference scheme for the linear part
and a forward scheme for the nonlinear part, Eq. (29) is
integrated point by point in the Fourier space as

W + g AL

A(n+l) _
w =
1 - BAt

; (32)

where the superscript designates the time step and Az is the

time increment. The nonlinear term, M B is obtained by Fou-
rier transform of the quantity Mg; the latter is calculated in
the real space using Eq. (26).

Similarly, for the in-plane displacements, we have

il . R
E=C1u1+D1u2+ o1, (33)
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FIG. 4. A simulated evolution sequence of wrinkles in a uniaxially stressed film ((f(lol)z—0.0l). (a) A=46.2 and Wgys=0.00033; (b) A
=444 and Wgys=0.313; (c) A=77.8 and Wrys=0.947; (d) A=128.2 and Wgys=1.66.

ity R .
g = C2u1 + D2u2 + ¢)2, (34)
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Using the semi-implicit algorithm, Egs. (33) and (34) are
then integrated as

A _ (1 - DA™ + ¢ AL + D A1 + VA1)
! (1= C,An(1 = DyAY) — CoD,(A1)? ’
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(40)

The numerical method in essence is the same as those
used in Refs. [13,22], with the main difference being the
treatment of the in-plane displacements. In both [13,22], the
in-plane displacements were calculated using elastic equilib-
rium relations. Here they are calculated as evolving quanti-
ties in parallel with the lateral deflection. As discussed in
[13], the spectral method resolves the challenges in numeri-
cal simulations by converting the high-order spatial differen-
tiation in the real space into algebraic multiplication in the
reciprocal Fourier space and utilizing the efficiency of fast
Fourier transform (FFT) and its inverse to communicate be-
tween the two spaces. Similar numerical methods have been
used for other evolution systems [23,24].

After normalization, physical parameters to be specified
for simulations include the normalized initial stress (rff), the
modulus ratio ug/ ps, the thickness ratio H/hy, and Poisson’s
ratios v and v;. The viscosity is absorbed into the normalized
time. In this study, we consider two types of initial stresses:

uniaxial (cri?:ao, 0'(2(;)=a'(102)=0) and equibiaxial (a’ﬁ?:a’é?
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=0y, U(]g)=0) with varying magnitudes. For the modulus ra-
tio, we first consider a special case with ug/u,=0 to eluci-
date the dynamics of initial growth and coarsening, follow-
ing which ug/ ,uf=10‘5 is used to illustrate the effect of
substrate elasticity. The other parameters are fixed for all
simulations as, H/hf= 10, »=0.45, and v;=0.3.

Numerically, a square computational cell in the x;—x,
plane with a periodic boundary condition is used. The size of
the computational cell is selected such that it is sufficiently
large compared to the longest wrinkle wavelengths (i.e., the
equilibrium wavelength \,), thus minimizing the effect of
cell size on the simulation results. The cell is discretized into
grids in both the x; and x, directions with a grid spacing
small enough to resolve the shortest wavelength of interest
(i.e., the critical wavelength \.). For the physical parameters
considered in the present study, it has been determined that
the cell size L=1000A, and a 128 by 128 grid are necessary
and sufficient. The corresponding grid in the reciprocal space
spans wave numbers from —27/15.6h; to 27/15.6h; with a
spacing 27r/1000A;. To start the simulation, a random pertur-
bation of amplitude 0.001%; is introduced to the lateral de-
flection of the initially flat film over the entire computational
cell, as shown in Fig. 3. The semi-implicit algorithm for time
integration is conditionally stable. To insure numerical sta-
bility and convergence, we use a time step Ar=100 (normal-
ized by 77/ u,) for all simulations in the present study.

Quantitative characterization of complex wrinkle patterns
is challenging [25]. In this study, two quantities are calcu-
lated to characterize the wrinkle patterns. First, the wrinkle
amplitude is evaluated by a root-mean-square (RMS) of the
lateral deflection, namely

> wim,n,1)?

Wrums(t) = N2 ) (41)
where w(m,n,1) is the deflection of the grid point (m,n) at
time ¢ and N is the number of grid points along one side of
the cell (i.e., N=128 for the present study). As an example,
for a one-dimensional sinusoidal wrinkle of amplitude A,
Wrms=A/\2. Second, the average wrinkle wavelength is

evaluated by
A==, (42)

where

_ > w(m,n,0)Pk(m,n)?
> [w(m,n,0)?

Equation (43) may be considered as a weighted RMS of the
wave numbers, where the weight |W|? represents the power
intensity of the corresponding wave number, similar to the
experimental plots of power spectra [14].

V. RESULTS AND DISCUSSIONS

A. Wrinkle growth and coarsening under uniaxial stresses

Figure 4 shows a sequence of simulated wrinkle patterns
under a uniaxial stress with magnitude oy=-0.01 (normal-
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Average Wrinkle Wavelength
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FIG. 5. (Color online) Evolution of wrinkle wavelength and
RMS under uniaxial stresses: go=-0.02 (A), -0.01 (O), —0.005
(), =0.002 (<), —0.001 (V). The dotted lines in (a) indicate the
fastest growing wavelengths predicted by the linear perturbation
analysis. The dotted-dashed line in (b) corresponds to the stress-
independent RMS at the kinetically constrained equilibrium states
of the fastest growing wavelength. The dashed lines show the
power-law scaling in both (a) and (b).

ized by the shear modulus u). Here we set the modulus ratio
ur/ =0 and postpone discussions on the effect of substrate
elasticity for a later section. Started with a random perturba-
tion as shown in Fig. 3, a parallel stripe pattern emerges
quickly in the direction perpendicular to the uniaxial stress.
As the time advances, both the wrinkle amplitude and the
wavelength increase [26]. Also can be seen is the presence of
defects in the stripe patterns and the decrease of the defect
density as the wrinkle evolves. Similar results are obtained
for various stress magnitudes. Figure 5 plots the evolution of
the average wrinkle wavelength and the RMS, both normal-
ized by the film thickness &, and the time is normalized by
1/ uy. The average wavelength quickly reaches a plateau at a
level depending on the initial stress [26]. This corresponds to

026214-6



DYNAMICS OF WRINKLE GROWTH AND COARSENING...

@ 7 =10"

0015

5 p
Gioik 1000
1000

00

1000

PHYSICAL REVIEW E 74, 026214 (2006)

.V‘ <
a s -~
i AP e Aes
5¢ A%
>
z of » o
_5k’ 1000

@z=10"

FIG. 6. A simulated evolution sequence of wrinkles in an equibiaxially stressed film (09=6'9=-0.01). (a) A\=42.8 and WrMs

11 =%

=0.00054; (b) N=45.1 and Wgys=0.423; (c) A=98.4 and Wrpys=1.50; (d) N=196.9 and Wrys=3.18.

the fastest growing mode predicted by Eq. (10) for the initial
growth, as indicated in Fig. 5(a) by the horizontal dotted
lines. At the same time, the RMS increases exponentially, as
predicted by Eq. (11). The wavelength starts to increase (i.e.,
coarsening) when the RMS reaches a critical level (
~0.3-0.4), nearly independent of the initial stress. As indi-
cated by the horizontal dashed line in Fig. 5(b), the RMS at
the kinetically constrained state of wavelength A=\, is
1/\/8=0.408, which is close to the transition points for all
stresses. Therefore, the first transition time predicted by Eq.
(20) is a reasonable estimate of the onset of coarsening,
which depends on the initial stress in the film.

During coarsening, the wavelength follows a straight line
with a slope close to 1/4 in the log-log plot as shown in Fig.
5(a), in agreement with the power-law scaling predicted by
the scaling analysis in Eq. (16). Remarkably, in spite of the
different initial stresses and different transition points, the
coarsening of the wrinkle wavelength follows essentially the
same path. On the other hand, the wrinkle amplitude grows
with the same scaling (after a short transition period) but
with different magnitudes for different initial stresses, shown
as parallel lines in Fig. 5(b). Since no elastic equilibrium
state exists for the present case (ug/u;=0), the coarsening
process continues until the simulation stops at =108, Note
that, to minimize the effect of computational cell size on the
simulation results, the wrinkle wavelength should be limited

to be small compared to the cell size. The longest wave-
length in the present simulations is about one quarter of the
cell size.

B. Wrinkle growth and coarsening under equi-biaxial stresses

Figure 6 shows a sequence of simulated wrinkle patterns
under an equibiaxial stress of magnitude oy=-0.01, again
with ug/p,=0. Differing from the stripe patterns under
uniaxial stresses, a chaotic labyrinth pattern emerges. Figure
7 plots the evolution of the average wavelength and the
RMS. Similar to the cases under uniaxial stresses, the aver-
age wavelength quickly reaches a plateau, corresponding to
the same fastest growing wavelength predicted by the linear
perturbation analysis, and the RMS increases exponentially
during the initial growth. The transition point from initial
growth to coarsening is about the same too, but the transition
process is quite different. The coarsening of the wavelength
is faster immediately after it reaches the transition point, giv-
ing a slope larger than 1/4 in the log-log plot [Fig. 7(a)]. The
slope then decreases as coarsening continues, eventually ap-
proaching 1/4. Such a behavior may be attributed to the
disorder of the labyrinth patterns. At the early stage of coars-
ening, the pattern is highly disordered with relatively short
stripes in random directions, for which the dynamics are not
well described by the scaling analysis assuming uniaxial
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FIG. 7. (Color online) Evolution of wrinkle wavelength and
RMS under equibiaxial stresses: a,=—0.02 (A), —0.01 (O), —0.005
(), —=0.002 (<), —0.001 (V). The dotted lines in (a) indicate the
fastest growing wavelengths predicted by the linear perturbation
analysis. The dotted-dashed line in (b) corresponds to the stress-
independent RMS at the kinetically constrained equilibrium states
of the fastest growing wavelength. The dashed lines show the
power-law scaling in both (a) and (b).

stresses. Later on, while the pattern remains disordered, it
consists of locally ordered long stripes coarsening in a simi-
lar manner as parallel stripes under uniaxial stresses. Conse-
quently, the coarsening paths under equibiaxial stresses are
different for different initial stress magnitudes, and they are
different from those under uniaxial stresses. The growth of
RMS under equibiaxial stresses is similar to that under
uniaxial stresses, but with a longer transition period before it
approaches the power-law scaling.

It should be pointed out that the present model does not
account for the possible pinning of the elastic film at the
bottom of the viscoelastic layer, as observed in some experi-
ments after long-time annealing [14,15]. Thus, the maximum
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FIG. 8. (Color online) Evolution of wrinkle wavelength and
RMS under uniaxial stresses: g,=-0.02 (A), -0.01 (O), —-0.005
(0), with a modulus ratio ug/u=107. The dotted-dashed line in
(a) indicates the equilibrium wrinkle wavelength, and the dotted-
dashed lines in (b) indicate the equilibrium amplitudes.

deflection is limited by the thickness of the viscoelastic layer
(ie., H= 10hy for the present simulations). For o;=-0.02, the
maximum deflection reaches this limit shortly after =107,
which stops the simulation.

C. Effect of substrate elasticity

The substrate elasticity has two major effects on the wrin-
kling process. First, it can stabilize the film under small
stresses so that the film remains flat with no wrinkles at all.
The critical stress is given by Eq. (12), for both uniaxial and
biaxial stress states. The second effect is that, when the ini-
tial stress is high enough to cause wrinkling, the elastic limit
of the substrate will eventually stabilize the wrinkle pattern.
For parallel stripe patterns, the equilibrium wrinkle wave-
length and amplitude are analytically given in Egs. (18) and
(19), respectively. For disordered stripes or labyrinth patterns
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FIG. 9. (Color online) Evolution of wrinkle wavelength and
RMS under equibiaxial stresses: a,=-0.02 (A), =0.01 (O), =0.005
(0), with a modulus ratio ug/u=107. The dotted-dashed line in
(a) indicates the equilibrium wrinkle wavelength, and the dotted-
dashed lines in (b) indicate the equilibrium amplitudes.

under equibiaxial stresses, however, no analytical solution is
available for the equilibrium state.

Figure 8 plots the evolution of average wrinkle wave-
length and RMS from numerical simulations under uniaxial
stresses and with a rubbery modulus wg/ u,= 107>. The criti-
cal stress in this case is 0,=-0.00324. When |o,| <|o,|, no
wrinkle grows. For |ay| > |0/, the initial growth is similar as
in Fig. 5, but with a slower growth rate for the amplitude as
predicted by the linear perturbation analysis [17]. The coars-
ening, however, is strongly influenced by the presence of the
equilibrium state. The wavelength increases and eventually
reaches another plateau, in agreement with the predicted
equilibrium wavelength (\,=76.2 in this case) [27]. At the
same time, the RMS approaches a plateau in agreement with
the predicted equilibrium amplitude. The equilibrium wave-
length is independent of the initial stress, while the equilib-
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rium amplitude increases as the stress magnitude increases.
Therefore, the power-law scaling for the coarsening dynam-
ics becomes less predictive under the effect of substrate elas-
ticity. In a special case, when oy= o, the fastest growing
wavelength is nearly the same as the equilibrium wave-
length. Consequently, only one plateau would appear in the
evolution of the wavelength, with no coarsening.

Figure 9 plots the evolution of wrinkle wavelength and
RMS under equibiaxial stresses and with the same rubbery
modulus, ug/p=107. Again, for |og|>|o,|, the initial
growth is well described by the linear perturbation analysis.
The wavelength reaches a plateau during the initial growth,
then coarsens, and eventually reaches the same equilibrium
wavelength as for the uniaxial stresses. On the other hand,
the RMS under an equibiaxial stress saturates at a plateau
slightly higher than the equilibrium value under a uniaxial
stress of the same magnitude, in agreement with a previous
study [13].

For both uniaxial and equibiaxial stresses, as compared to
Eq. (20), the transition from initial growth to coarsening is
delayed by the substrate elasticity due to the reduced growth
rate at the initial stage. The delay is more significant when
the film stress is lower. For the second transition, the coars-
ening dynamics deviates from the power-law scaling long
before it reaches the equilibrium. As a result, Eq. (21) sig-
nificantly underestimates the time to reach equilibrium.

Figure 10 shows the wrinkle patterns for different stresses
at the end of each simulation (r=10%). Under uniaxial
stresses [Fig. 10(a)], similar stripe patterns are obtained for
different stress magnitudes, with the same wrinkle wave-
length but different amplitudes. Under equibiaxial stresses
[Figs. 10(b)-10(d)], although the average wavelength at
equilibrium is independent of the initial stress, the coarsen-
ing dynamics leads to different evolution paths and thus dif-
ferent wrinkle patterns. It is found that, while the details of
the wrinkle pattern stochastically depend on the initial per-
turbation, the average wavelength and the RMS capture the
deterministic feature of the chaotic pattern.

D. Discussions on scaling

In Sec. III A, a length scale L, and a time scale 7 are
obtained for the initial growth of wrinkles. Figure 11 replots
the evolution of wrinkle wavelength from the numerical
simulations [Figs. 5(a) and 7(a)], with no substrate elastic-
ity), scaled by L; and 7;. Remarkably, the evolution paths for
different stress magnitudes collapse onto one for uniaxial
stresses and another for equibiaxial stresses. At the early
stage, the film selects the fastest growing wrinkle wavelength
(i.e., the plateau in Fig. 11), which is the same for both
uniaxial and equibiaxial stresses. Interestingly, the process of
wavelength selection at the early stage seems to follow the
same scaling as coarsening, i.e., N~ Y4 This process, how-
ever, strongly depends on the initial perturbation, and is typi-
cally too short to be captured in experiments. The difference
between the two paths is in the dynamics of coarsening. Un-
der uniaxial stresses, the coarsening process is well described
by the power-law scaling with an exponent 1/4. Under
equibiaxial stresses, however, it undergoes a transition stage
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FIG. 10. Equilibrium wrinkle patterns with a modulus ratio wg/ u,= 1073: (a) under an uniaxial stress, o,=—0.005; (b) equibiaxial stress,
07=-0.005; (c) equibiaxial stress, oy=—0.01; (d) equibiaxial stress, op=-0.02.

that starts with a faster coarsening rate. This is consistent
with the MD simulations of buckling molecular chains [20]
and membranes [21], with the chains under uniaxial stresses
and the membranes under equibiaxial stresses. With substrate
elasticity, however, the dynamics of coarsening is strongly
influenced by the presence of the equilibrium state (Figs. 8
and 9), which does not follow the same scaling.

It should be noted that the above scaling analysis and
numerical simulations are based on the model previously de-
veloped under the assumption that the thickness of the vis-
coleastic layer is small compared to the wrinkle wavelength
(H<<\) and that the viscoelastic layer is compressible (i.e.,
v<0.5). Following the same approach, different scaling can
be derived for the cases with incompressible thin layers or
thick substrates. For an incompressible thin layer (v=0.5),
the evolution equation takes the form [17]

ow
Pl K'VVV2w+ F'VIV - (o-Vw)]-Rw, (44)
where
’ - th;H?, FI = Hshf
18(1-v)7y 3p

(45)

Comparing the first two terms in the right-hand side of Eq.
(44) gives the same length scale as Eq. (7), but the time scale
now becomes

__K? _ huin
(Foo)  12(1 - v)*Hoy

!
7

(46)

At the kinetically constrained wrinkle states, the scaling, oy
~\"2, still holds. Therefore, the coarsening of the wave-
length now scales as N~ "%, For a thick viscoelastic sub-
strate (H>\), it is more convenient to consider the Fourier
transform of the evolution equation [13]. For the lateral de-
flection, the linearized evolution equation after Fourier trans-
form takes the form

w 1= 4t
= —V{— gy (Tokzhfv?/} Ry a7

Again, the same length scale is obtained, but the time scale is

uM(&)S_ A Y /i
7-1_(1—1)),ugf hy I 6(1—vf)0'(3)' “8)

Therefore, the scaling for coarsening in this case is A ~ "3, It
is speculated that, for a viscoelastic layer of an arbitrary
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FIG. 11. (Color online) Evolution of wrinkle wavelength, scaled
by the length L, and the time 7, under different uniaxial stresses
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thickness, the exponent of the power-law scaling for coars-
ening of wrinkles should be between 1/4 and 1/3 for a com-
pressible layer and between 1/6 and 1/3 for an incompress-
ible layer. A similar transition was noted for the phase
separation kinetics of polymer blend films, where the coars-
ening exponent changes from 1 for thick films (100 nm) to a
value near 0.5 for thin films (20 nm) [28]. While the power-
law coarsening is analogous to other phase ordering phenom-
ena as noted before [14,20,21], the dynamics of wrinkling is
distinct and rich under the effects of stress and substrate
elasticity.

Finally, we briefly comment on the comparison between
the present modeling results and experimental observations.
Qualitatively, the model reproduces most of the features ob-
served in experiments (e.g., Ref. [14,15]), such as the wave-
length of initial growth and subsequent coarsening as well as
the equilibrium wrinkles in some cases. However, the coars-
ening exponent reported in [14] is close to 1, noticeably
greater than the predicted exponents for either thin or thick
viscoelastic layers. The cause of this discrepancy is unclear
at this point. It may suggest that in experiments something

PHYSICAL REVIEW E 74, 026214 (2006)

other than the stress-driven, viscosity-controlled dynamics
plays an important role. One suspect of such is the pinning of
the top film at the surface of the rigid substrate supporting
the thin viscoelastic layer, which was observed in some ex-
periments [14,15]. However, it is questionable whether the
pinning would increase the coarsening exponent as much as
what was observed. More specific comparisons with experi-
ments require the knowledge of elastic and/or viscoelastic
properties of the materials and the stress in the film, which
are often missing in the literature.

VI. SUMMARY

This paper presents a scaling analysis and two-
dimensional numerical simulations of wrinkle growth and
coarsening in stressed thin films on a viscoelastic layer. It is
found that, during the initial growth, a stress-dependent
wavelength is selected and the wrinkle amplitude grows ex-
ponentially over time. During coarsening, both the wrinkle
wavelength and amplitude increases, following a power law
with exponent 1/4 under uniaxial stresses. More complicated
dynamics is predicted under equibiaxial stresses, which starts
with a faster coarsening rate before approaching the same
power-law exponent under uniaxial stresses. Furthermore,
the coarsening dynamics is strongly influenced by the pres-
ence of an equilibrium state when substrate elasticity is in-
cluded. The equilibrium wrinkle patterns under uniaxial and
equibiaxial stresses have the same wavelength, but the
wrinkle amplitude is slightly higher under equibiaxial
stresses for the same stress magnitude.

Similar power-law scaling is derived for a stressed elastic
film on an incompressible thin viscoelastic layer or on a
thick viscoelastic substrate. The analogy between the wrin-
kling dynamics and other phase ordering phenomena is
noted, and comparison between the modeling results and ex-
perimental observations is discussed.
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